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Abstract 

The strength values obtained in four series o f  bend 
tests on two monolithic ceramic materials have been 
statistically evaluated. Statistical mapping pro- 
cedures were used to check whether a Weibull 
distribution[its the strength data. Where this has been 
found to be the case, the value o f  the Weibull 
parameters determined according to different evalu- 
ation methods fall  within each other's confidence 
interval. The values o f  the modulus m and of  the 
characteristic strength a o o f  the two-parameter 
distribution can differ signOfcantly .from the corre- 
sponding values in the three-parameter distribution. 

Die Festigkeitswerte yon zwei monolithischen Kera- 
miken wurden durch Biegeversuche in vier Serien 
bestimmt und statistisch ausgewertet. Hierzu wurden 
verschiedene statistical mapping angewandt um zu 
kliiren, ob die Festigkeitsdaten einer Weibull-Vertei- 
lung folgen. Wo dies der Fall war, fielen die Weibull- 
Parameter, die nach den verschiedenen Auswertungs- 
methoden bestimmt wurden, in die jeweils gegenseitigen 
Kon[idenzintervalle. Die Werte des Moduls m und der 
charakteristischen Festigkeit ~r o der zweiparametri- 
gen Verteilung k6nnen stark yon den entsprechenden 
Werten der dreiparametrigen Verteilung abweichen. 

On a traitk statistiquement les valeurs de rOsistance 
mkcanique obtenues au cours de quatre sbries d'essais 
en flexion rkalisks sur deux ckramiques monolithiques. 
Statistical mapping de cartographie btaient raises en 
oeuvre afin d'estimer si une distribution de Weibull 
ktait adaptbe aux valeurs de la rbsistance mkcanique. 
Lorsque cela est le cas, les valeurs du paramktre de 
Weibull dbterminkes selon les diffbrentes mkthodes 
d'bvaluation sont situkes dans le m~me intervalle de 
confiance. Les valeurs du module m et de la rksistance 

mkcanique caractbr&tique ~o de la distribution gt deux 
paramOtres peuvent diffkrer trks sensiblement des 
valeurs correspondantes de la distribution ~ trois 
paramktres. 

1 Introduction 

The strength of a ceramic material is a statistical 
quantity which is sensitive to the defect population 
within the material. Probabilistic design concepts 
are therefore more appropriate for ceramics than the 
conventional concepts used for metallic compo- 
nents. The statistical analysis methods used to 
represent the strength variability in ceramic 
materials are mostly based on the well-known 
Weibull distribution function. The purpose of this 
paper is to investigate the applicability of this 
distribution function to four series of bend strength 
data obtained on two monolithic ceramic materials 
and to assess the effect of different methods for 
determining the parameters of the distribution. 
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2 Theoretical Background 

2.1 Weibull function 
Failure of brittle materials is normally described 
according to the weakest link model. The most 
commonly used statistical distribution function to 
represent the failure strength is due to Weibull. 1 The 
failure probability P at a given applied stress a 
according to this distribution is given by: 

P = l - e x p l  - ~ ° - a u l m ~ ~  ao ) _1 (1) 

This equation represents the three-parameter 
Weibull function with the shape parameter m 
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(Weibull modulus), the scaling parameter  ao (charac- 
teristic stress) and the locat ion pa ramete r  o', 
(threshold stress). In the majori ty of  cases, for 
reasons of  ease of  evaluation and of  conservatism, 
the value o f a  u is taken to be zero. 2 This results in the 
two-parameter  Weibull equation: 

P = 1 - exp [ - (a/ao) m] (2) 

It should be remembered here that  the value of  the 
scaling parameter  o" o depends on the dimensions (e.g. 
the volume and/or  external surface area) of  the 
tested specimen or component .  

2.2 Methods to determine the Weibull parameters 
Various methods  exist to determine the Weibull 
parameters m and ao f rom a set of  experimental  
data. They can be divided into two groups: methods  
that  are based on fitting the data to the non-linear 
eqn (2), and methods  which rely on a linearization of  
that  equation. 

2.2.1 Non-linear equation methods 
Three different methods  can be used to determine m 
and O'o f rom the non-linear eqn (2). 

2.2.1.1 Method of  moments. 2'3 In this method,  the 
moments  of  the experimental failure distr ibution are 
set equal to the moments  of  the theoretical Weibull 
distribution. This results in the following set of  
equat ions which can be solved for m and ao: 

a 1 ,3, 
ir(l+ ) F2(1+1)11/2 

s/g - (4) F(1) 
where £ and s represent the mean value and the 
s tandard  deviat ion of  the experimental  results 
respectively and F is the gamma  function. In a wide 
range of  m values eqn(4) can be approximated  by: 3 

m =  -0-621 + 1-2785£/s (5) 

Consequently,  using the experimental  values of  g 
and s, eqns (5) and (3) can be used to determine m and 
O" 0 . 

2.2.1.2 Maximum likelihood method, z'3 Accord- 
ing to this method,  estimates of  the parameters  m 
and a0 are obtained by solving the following set of  

equat ions derived f rom maximizing the likelihood 
function: 

n + ~ l n a _ n ~ a m l n a  -~ ~ am = 0 (6) 

a 0 = o -m (7) 

where n represents the total number  of  results. This 
non-linear set of  equat ions is solved through an 
iteration procedure (e.g. by using the Newton -  
Raphson  method). 

2.2.1.3 Direct non-linear least squares analysis. 
This method  is usually referred to in the literature as 
a possibility and involves complex,  non-easily 
programmable  c o m p u t a t i o n s )  Its interest on the 
practical level is rather limited. 

2.2.2 Methods based on the linearized form of  eqn (2) 
2.2.2.1 Conventional analysis. Taking  double  

logari thms of  eqn (2) results in: 

1 
In In - m In a - m In a o (8) 

1 - P  

In order to apply linear regression to this equat ion 
(from which the values of  m and a o can be 
determined), numerical  values must  be assigned to 
the left-hand side, i.e. a choice has to be made  for the 
experimental  definition of  the failure probabil i ty P. 
A number  of  different estimators for P have been put 
forward in the literature, 2'4 the most  c o m m o n  ones 
being: 

i - 0 . 5  
P i = - -  

n 

and 

i 

n + l  

where i represents the rank number  and n is the total 
number  of  results. A m o n g  these estimators, the first 
one is favoured because it results in the smallest bias 
on the derived value of  the Weibull modulus  m (see 
next section). 

2.2.2.2 Application of  a weight Junction. Least- 
squares linear regression analysis on the linearized 
eqn (8) assumes that  the values of  In a, and not  of  a, 
are distr ibuted normally a round  the 'true' straight 
line. Since this is not  the case, a weight function 
should be used. The appropr ia te  form of  the weight 
function reads: 3'5 

W~ = [(1 - Pi) In (1 - pi)]2 (9) 
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This weight function must be applied to the sum of 
squares of the deviations of the data from the 
straight line fit. It is claimed 3 that application of this 
weight function to the linearized eqn (8) results in 
very similar estimates for m and a o as those obtained 
through a direct non-linear least-squares analysis on 
eqn (2). 

2.3 Bias and coefficient of variation on the 
estimate of the Weibull modulus m 
For small samples sizes (n < 100), all methods for the 
estimation of the parameter m result in biased 
estimations, i.e. the estimated value of m is not 
exactly equal to the value of the true population 
parameter. In order to determine the bias associated 
with the different estimation methods, Monte-Carlo 
simulations have been performed. 2-s With the 
exception of the method of moments, only a single 
value of the true m must be considered to obtain the 
bias and the coefficient of variation for all possible 
values of m. 

Next to the occurrence of bias in small sample 
sizes, there also exists an effect of statistical 
variability. Indeed, strength testing involves taking a 
random sample from, in principle, an infinite 
amount  of specimens. Because of the limited sample 
size (i.e. the number of specimens tested), it cannot be 
expected that the mother  populat ion will be 
described exactly. This means that for a particular 
estimation method each sample will have different m 
and a o values which will differ from the true values. 
These sample values are distributed normally and 
can thus be characterized by an average value and a 
variation coefficient. For the methods where an 
estimator for the probability of failure is needed, the 
bias and the coefficient of variation obviously 
depend on the estimator used. 

The values of bias and coefficient of variation for 
the Weibull modulus m are listed in the tables in 
Appendix 1. It is observed that the bias is markedly 
less when the estimator Pi = (i - 0.5)/n is used instead 
of Pi = i/(n + 1). When the former estimator is used, 
there is no significant improvement by using a 
weight function. However, this does not imply that 
the two methods, i.e. using a weight function or not, 
are equivalent for this estimator, since the data in the 
table only reflect the statistical behaviour. Indi- 
vidual m values determined according to both 
methods can be significantly different. In view of the 
point raised in the previous section, the use of a 
weight function should be favoured. 

On the basis of the criterion of minimum bias, the 
weight function method is preferred. However, since 
for a particular evaluation method, the value of the 

bias is known from the tables in Appendix 1, the 
criterion of minimum coefficient of variation could 
equally well be used. In that case, the maximum 
likelihood method is to be favoured. 

2.4 Statistical mapping 
In the previous sections, attention has been focused 
on the Weibull distribution as the most commonly 
used 'weakest-link' descriptor for failure of brittle 
materials. It suffers, however, from the major 
drawback that it has no basis in the physics of the 
failure process. Consequently the question can be 
raised to what extent a purely empirical distribution 
can be used confidently to represent experimental 
strength data. The quality of this representation, i.e. 
the degree of fit, also significantly affects any 
extrapolation of the data outside the experimentally 
covered range of failure probabilities. 

In order to assess the suitability of a theoretical 
distribution function for describing the experi- 
mental data, statistical mapping procedures can be 
used. The concept and procedures for applying 
statistical mapping are outlined in greater detail in 
Appendix 2. Only the main points are summarized 
here. In a statistical map two non-dimensional shape 
factors (/~, skewness and /~2, kurtosis), calculated 
from the moments of the distribution, are used to 
trace the movement of theoretical distributions. 6 In 
a (/~, flz)-plot the theoretical distribution functions 
with two shape parameters are represented by a 
bounded area, those characterized by one shape 
parameter (e.g. Weibull) are represented by cont- 
inuous lines and those without shape parameter by a 
fixed point. The shape factors best suited for 
application to small sample sizes (as encountered in 
practice) are based on probability weighted mo- 
ments. The non-dimensional shape factors ~3 and z4 
(corresponding to the experimental data set) are 
calculated from the moments in which the theo- 
retical expectation and the random variable are 
replaced by the average value and the sample values, 
respectively (see Appendix 2). To select the distri- 
bution function for the experimental data, the 
empirical values r 3 and ~4 are plotted in the 
statistical map. The continuous line passing closest 
to the point (v3, ~4) corresponds to the distribution 
with one shape parameter which best fits the 
experimental data. 

3 Experimental Procedure 

A sintered alumina and a TZP-Y-stabilized zirconia 
have been investigated in this study. The materials 
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Table !. Experimental  bend s t rength values 

Material Configuration Number ~)[' Strength Average Standard 
specimens range (MPa) deviation 

(MPa) (MPa) 

Zirconia  b = 4, h = 3 m m  23 
b = 3 ,  h = 4 m m  24 

Alumina  b = 4, h = 3 mm 24 
b = 3 ,  h = 4 m m  25 

450-742 679 75 
490-774 681 66 

253-341 297 25 
220-326 283 32 

were delivered in the form of plates. Bend specimens 
were machined from these plates in the longitudinal 
direction on a fiat grinding machine, followed by 
precision grinding. The bend specimens were neither 
polished, nor were the edges chamfered. The nomi- 
nal dimensions are 3 × 4 × 52 mm 3. The dimensional 
variations were well within the allowable tolerances 
of ASTM C28.01, AFNOR B41-104 and DIN 51 
110. 

The bend tests were performed under four-point 
loading at room temperature using a non- 
articulating stainless steel bending fixture with outer 
and inner spans of 40 mm and 20 mm, respectively. 
The roller-bearings were free to rotate around their 
axis. Tests were performed at a constant outer fibre 
stress rate of 26 MPa s- 1 for alumina and 10 MPa 
s-1 for zirconia. For both materials these figures 
correspond to a deflection rate of 0"5 mm min- 1 and 
an outer fibre strain rate of 6.8 x 10-Ss -1 

For each material, two series of bend tests were 
performed. In the first series, the normal configura- 
tion (3 mm height of the specimen) was used, while 
for the second series the height h was replaced with 
the width b. For the calculation of the bend strength, 
average values for the height and width measured in 
the centre and on two equidistant locations were 
used. Prior to testing, the bend specimens were 
randomizedl The experimental bend strength values 
are summarized in Table 1. 

4 Discussion 

4.1 Weibuil parameters 

The experimental bend strength data are analysed 
according to the different evaluation methods 
outlined. The resulting values of the Weibull 
modulus m and of the characteristic strength a 0 are 
summarized in Table 2. Where an estimator is 
needed, P~ = (i-0-5)/n has been used. 

The value of the Weibull modulus ranges from 
9.34 to 15.34 and from 9"65 to 14"38 for zirconia and 
alumina, respectively. The spread in characteristic 
strength values is much smaller and ranges from 706 
to 718 MPa and from 296 to 308 MPa for zirconia 
and alumina, respectively. There is no clear tendency 
for any of the evaluation methods to yield higher or 
lower m values than the others. 

Figures 1 and 2 show the experimentally obtained 
rupture strengths in a 'conventional' Weibull plot 
(the estimator Pi=(i-O'5)/n has been used). For 
zirconia (Fig. 1), the b = 4 mm test series exhibits an 
upward curvature, while this is not apparent for the 
b = 3 mm series. Such an upward curvature cannot 
be explained by a non-zero value of the threshold 
stress a u and has been considered indicative of the 
occurrence of two flaw populations. 7 The experi- 
mental data obtained on the alumina, however, 
show evidence of a downward curvature which can 

Table 2. Values of  the shape paramete r  m and scaling paramete r  a 0 obta ined  according to different 
evaluat ion methods  

Material Configuration Evaluation method 

Linear Weight Method o[" Maximum 
regression function moments likelihood 

m ZrOz b = 4, h = 3 mm 9'34 
b = 3, h = 4 mm 11'80 

A120 3 b = 4 ,  h = 3 m m  14.10 
h = 3 ,  h = 4 m m  10"51 

a o (MPa) ZrO 2 b = 4 ,  h = 3 m m  717 
b = 3 ,  h = 4 m m  711 

AI20  3 b = 4, h = 3 m m  308 
b = 3 ,  h = 4 m m  296 

14"15 10"97 15"34 
14'04 12'56 14-46 

11"34 14'38 12"55 
9"65 10"78 1 l '26 

718 711 706 
712 710 708 

307 308 308 
298 296 296 
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Fig. 1. Conventional Weibull plot of the bend data on zirconia. 
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Fig. 2. Conventional Weibull plot of the bend data on alumina. 

be explained by a threshold a,  > 0 (Fig. 2). Figure 3 
shows the cumulative failure probability plot for the 
b = 4 mm test series on alumina evaluated according 
to the different methods listed in Table 2. As can be 
observed, the results according to the different 
methods are rather similar. They all overestimate the 
failure probabilities both at low and high stresses. 

When the respective values of the bias and the 
coefficient of variation (listed in Appendix 1) are 
taken into account, the ranges of m values listed 
in Table 3 are obtained (range=bias-corrected 
value _+ one standard deviation). Assuming that the 
m values determined according to any method are 
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Fig. 3. Comparison between experimental and calculated 
cumulative failure probability plots for the bend test (h = 4 ram) 

on alumina. 

normally distributed, this range corresponds to the 
68% confidence interval. 

Except for ZrO 2 tested in the b = 4 ,  h = 3 m m  
configuration, the confidence intervals of m deter- 
mined according to different evaluation methods 
overlap. This is also the case for the ranges 
corresponding to the two test configurations and 
determined according to a single evaluation method. 

4 . 2  S t a t i s t i c a l  m a p p i n g  

Figure 4 shows the representation of the Weibull 
distribution function in a statistical map, together 
with the working points (r3, %) of the four test series. 
It can be observed that the/3 = 4, h = 3 mm bend test 
series on zirconia has a ~3 value which lies outside 
the range of ~3 values corresponding to the Weibull 
distribution. This implies that the latter is not an 
adequate representation of these experimental data. 
For the other test series acceptable (%, %) combina- 
tions are obtained, although they do not fall exactly 
on the curve representing the theoretical Weibull 
distribution. 

Using the expressions for the first three prob- 
ability weighted moments (see Appendix 2) of the 
Weibull distribution, which are used for the 
calculation of the value of % and %, a relationship 
between the parameters m and au can be established. 

Table  3. 68% Confidence intervals for the shape parameter m 

Material Configuration Linear Weight Method q[ Maximum 
regression [ h n c t i o n  moments likelihood 

ZrO 2 b=4 ,  h = 3 m m  7.24-11.27 11.31-17.27 8.35-12'46 11-65-17-05 
b=3 ,  h = 4 m m  9.20-14.20 11.29 17.08 9.61 14.25 11-08-16-06 

A120 3 b=4 ,  h = 3 m m  10.97-16.97 9.13-13.79 11.01-16.31 9.6(~13.93 
b=3 ,  h = 4 m m  8.23-12.61 7.80-tl.70 8.32-12.22 8.68 12.50 
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Fig. 4. Statistical m ap  showing the curve cor responding  to the 
Weibull dis t r ibut ion,  together  with the working points  of  the 

four test series. 

Consequently the values of m and ~0 corresponding 
to a zero threshold stress au -- 0 (i.e. two-parameter 
Weibull distribution) can be obtained. The results 
for the different test series are listed in Table 4. As 
can be observed, these values agree well with those 
listed in the previous table. 

The expressions for the probability weighted 
moments  in principle also allow the separate 
determination of the three Weibull parameters m, 
t7 o and t7 u. A prerequisite is, however, that the 
experimental data can adequately be represented by 
a Weibull distribution. As mentioned before, and as 
shown in Fig. 4, this is not the case for one series of 
bend tests on ZrO2. Consequently, for this test series, 
the determination of the three parameters of the 
Weibull distribution is not possible. The results for 
the other series are summarized in Table 5. 

Table 4. Values of  the shape and  scaling paramete r  determined 
th rough  statistical mapp ing  for a zero threshold stress 

Material Configuration m a o (MPa) 
for  a,  = 0 .for au = 0 

ZrO 2 b = 4 ,  h = 3 m m  9-74 715 
b = 3 ,  h = 4 m m  10.47 715 

AI20  3 b = 4 ,  h = 3 m m  12.06 309 
b = 3, h = 4 mm 9.08 298 

Table 5. Values of  the Weibull  parameters  m, a o and  a u 
de termined th rough  statistical mapp ing  

Material Con.~guration m t~ o (MPa) a u (MPa) 

ZrO 2 b = 4, h = 3 m m  - -  - -  - -  
b = 3 ,  h = 4 m m  90 5640 - 4 9 2 4  

AI203 b = 4, h = 3 m m  2.2 74 232 
b = 3 ,  h = 4 m m  7-0 237 61 

The b = 3 mm test series on zirconia exhibits a 
negative threshold stress. This is physically unreal- 
istic and reflects the purely empirical nature of the 
three-parameter Weibull distribution. For AI2Oa, 
positive threshold stress values are obtained, which 
agree with the graphical representation of Fig. 2. 
When a non-zero positive threshold stress a u is 
incorporated, the values of m and a o strongly differ 
from those corresponding to a two-parameter 
distribution. Failure probabilities at low stresses 
calculated according to the latter are higher than 
those calculated from the former. For reasons of 
conservatism the two-parameter distribution is thus 
favoured. 2 

4.3 Analysis of the combined data sets per 
material 
As mentioned before, the bend tests have been 
performed in two configurations on similar speci- 
mens by exchanging the width for the height. The 
most important effect of this is a change in the stress 
gradient through the specimen. To a smaller extent, 
it also affects the value of the effective surface in both 
configurations, while the effective volume remains 
the same for equal values of the Weibull modulus m. 
Even taking into account that different values of m 
are obtained for the two configurations (see Table 2), 
the differences in effective volume and effective 
surface are small. Consequently, the major effect, if 
any, of the difference in strength values obtained in 
the two test configurations, is attributed to the 
different stress gradients. 

The ratios of the failure strengths ab=4/ab= 3 
corresponding to a 50% failure probability are 1.048 
for A120 3 and 0.999 for ZrO2, respectively. Both 
these values are close to 1, indicating that the stress 
gradient does not play an important  r61e. Conse- 
quently, failure depends on the absolute value of  the 
outer fibre stress, implying that surface flaws are the 
dominant  failure initiation sites. On this basis, the 
data from both test series for each material can be 
treated as originating from a single population. The 
results of  the analysis of  the combined data are 
shown in Figs 5 and 6. As can be observed, they can 
be well represented by a two-parameter Weibull 
distribution. In particular, it can be seen that the 
combined ZrOz data do not exhibit a pronounced 
two-slope behaviour, which is indicative for the 
occurrence of more than one flaw population. For 
both materials, the modulus of the combined data 
falls between that of  the two separate series. 

This argumentation concerns the dependence of  
the failure strength on the stress gradient. However, 
the Weibull modulus m can also be affected by the 
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Fig. 5. Weibull plot of the combined bend data on zirconia. 
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Fig. 6. Weibull plot of the combined bend data on alumina. 

stress gradient. In the literature, a relationship 
between m and the stress gradient da/dh is claimed in 
a number  of  cases, s A tendency for the m value to 
decrease as the stress gradient increases is associated 
with the presence of  two different flaw populations: 
surface flaws contribute more to fracture in the 
presence of a large stress gradient, while volume 
flaws are favoured in the case of a low stress 
gradient. As an operational definition of  the stress 
gradient the following expression is used: 

da/dh = ao/(h/2) = 2ao/h 

Table 6 summarizes the values of  m, a o (conven- 
tional Weibull analysis) and da/dh. 

The aforementioned tendency for m to decrease 
with an increase in da/dh only occurs for ZrOz. This 
suggests that two flaw populations are present in the 
bend tests on ZrO 2. Consequently the Weibull 
distribution is not the appropriate distribution to 
represent  the experimental  data. This is also 

Table 6. Values of m, a o and da/dh for the different series of 
bend tests 

Material Con[iguration m ao (MPa) da/dh 
(MPa/mm) 

ZrO 2 h=4 ,  h = 3 m m  9"31 717 478 
h=3 ,  h = 4 m m  11"80 711 356 

AI20 3 h=4 ,  h = 3 m m  14.10 308 205 
b=3, h=4mm 10.51 296 148 

confirmed by the fact that the z 3 value corre- 
sponding to the data from both series does not fall 
within the range of  validity for the Weibull 
distribution. For A120 3, an opposite trend occurs 
for m and da/dh and no inferences can be made on 
the occurrence of  one or more flaw populations. 

4.4 Inferences on the occurrence of more than one 
flaw population 
In the previous discussion, the possibility of  the 
occurrence of  more than one flaw population in the 
zirconia specimens has been touched upon a number 
of times. The most direct indications in this respect 
are that it is either impossible to determine the 
Weibull parameters ( b = 4 m m  specimens) or that 
awkward negative values for a n (b = 3 mm speci- 
mens) are obtained when the data are evaluated 
using statistical mapping procedures (see Table 5). 
Fractographic evidence to support the occurrence of 
a bimodaI flaw population in the zirconia bend 
specimens is presented in a companion paper, 9 
where the flaw populations in bend and uniaxial 
tensile specimens are characterized. This finding 
corroborates the deductions made here on the 
occurrence of  more than one flaw population 
through application of  statistical mapping. 

5 Conclusions 

Different statistical evaluation methods have been 
applied to four series of  bend tests on two materials. 
Statistical mapping has shown that the failure 
stresses of  three series can be adequately represented 
by a Weibull distribution, while this is not possible 
for one series. 

Determination of the parameters m and a o of  the 
two-paramete r  Weibull funct ion according to 
different methods yields values of  the parameters 
which fall within each other's confidence interval. 
This is not the case for the test series that cannot be 
adequately represented by a Weibull distribution 
function. For this test series it is deemed that two 
flaw populations occur simultaneously, thereby 
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invalidating the basic premise of  the Weibull 
distribution, viz. that a single flaw population 
dominates failure over the full investigated stress 
range. Additional support is given by the inverse 
dependence of the modulus m on the stress gradient 
that is found for this test series. 

Application of the statistical mapping method 
allows an easy numerical determination of  the 
parameters of the three-parameter Weibull distri- 
bution in the case where the experimental data can 
be fitted by this distribution. The resulting values, 
specifically that of the modulus m, can be very 
different from those of a two-parameter distribution. 
Furthermore, the value of m is observed to inversely 
depend on the value of the threshold stress tr u. 
Negative values of  tr u, which are physically unreal- 
istic, are indicative of the occurrence of more than 
one flaw population. 
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Appendix 1: Bias and Coefficient of Variation (in 
parentheses) for the Weibull Modulus m 
Determined from Monte-Carlo Simulations 2 -5 

Table AI.I. Methods based on non-linearized equation 

M e t h o d  o[  m o m e n t s  M a x i m u m  
l ike l ihood 

m = 5 m = 10 m = 25 

10 1-098 (0.32) 1.132 (0-32) 1.159 (0-33) 1.165 (0.34) 
20 1-044 (0.20) 1-063 (0-21) 1.076 (0.22) 1.078 (0.20) 
30 1-028 (0.16) 1.037 (0-17) 1.049 (0.18) 1.048-(0.16) 
40 1-019 (0.14) 1-032 (0.14) 1.038 (0.16) 1.035 (0.13) 
50 1-015 (0.12) 1-026 (0.13) 1.033 (0.14) 1.025 (0.12) 

Table AI.2. Methods based on linearized equation 

ii Leas t  squares  WeLgllt f unc t i on  

i i - 0 .5  i i -0 -5  
P;  - C - P;  - P ,  - 

n + I n n +  1 n 

10 0.869 (0.33) 1.062 (0.33) 0-865 (0.31) 1.015 (0-33) 
20 0.890 (0.24) 1.011 (0.23) 0.917 (0.20) 0.990 (0.22) 
30 0.908 (0.19) 1.006 (0.19) 0.937 (0.17) 0.990 (0.18) 
40 0.918 (0-17) 1.002 (0.17) 0.955 (0.15) 0.992 (0.15) 
50 0.924 (0.14) 0.998 (0.14) 0.963 (0.14) 0.995 (0.14) 

100 0-952 (0-10) 0.997 (0.10) 0.982 (0.10) 0.998 (0.10) 

Appendix 2: Statistical Mapping 6 

In a statistical map,  two non-dimensional  shape 
factors,/31 and/32, are used to trace the movement  of 
theoretical distributions. The shape factors are 
based upon  the central moments ,  i.e. moments  about  
the mean p, of  the distr ibution according to 

and 

/31 = p2/p3 (skewness) 

/32 = u,,/p~ (kurtosis) 

where Pk represents the kth central m o m e n t  

V~ 
l a ) k p ( x i )  

i 

for a discrete variable x with a probabil i ty density 
function p(xi). 

The evaluation of  the theoretical values of/31 and 
/32 can be quite difficult for some distributions. 
Fortunately,  the evaluation of  the empirical values 
of/g~ and f12 from experimental data involves only 
elementary arithmetic. 

The basic concept of using a statistical map  as a 
guide to the most  appropria te  distr ibution simply 
involves plott ing the values of fll and f12 on the 
theoretical map. However, the standardized skew- 
ness /31 is an even function and hence cannot  
represent negative skewness. In order to do so,/31 is 
replaced by ~t 3 = p3 / IJ~ /2  = / 3 ] / 2 .  

In practice, small sample sizes are encountered in 
the majori ty of  cases. Under  these conditions, the use 
of  probability weighted moments  is preferred over 
using the central moments .  6 The first four prob- 
ability weighted moments  of a theoretical distri- 
but ion function are given by 

Ai = E[X(1 - F(X)) i] i = O, 1, 2, 3 

where E is the theoretical expectation, X the r andom 
variable and F(X) the theoret ical  cumula t ive  
dis t r ibut ion function. To obtain small sample 
equivalents, the expectation E is replaced by the 
average and X by the sample values X,.. For  F(X) the 
est imator P,. = ( i -  0-35)/n is used, where i represents 
the rank and n the total number  of data. In 
construct ing the statistical map,  linear combinat ions  
of the empirical equivalents of the Ai moments  are 
used: 6 

L 1 = A 0  

L 2 = A o - 2A l 

L 3 = A o -  6A1 + 6A2 

L 4 = A 0 -  12A l + 3 0 A E - 2 0 A  3 

from which the values of  ~3 (skewness) and z 4 
(kurtosis) can be finally calculated as 

75 3 = L 3 / L  2 z 4  = L 4 / L  2 

To select the most  appropr ia te  d is t r ibut ion 
describing the experimental data, the empirical 
values o fz  3 and z 4 are plotted in a theoretical (z3, z4) 
diagram (i.e. the statistical map). The cont inuous  
line, representing a theoretical distr ibution function 
with one shape parameter,  passing closest to the 
experimental  (z3, r4) point  corresponds to the 
distribution which best fits the experimental  data. 


